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MESHES OPTIMIZED FOR DISCRETE EXTERIOR CALCULUS
(DEC)

SARAH C. MOUSLEY∗, MICHAEL DEAKIN † , PATRICK KNUPP ‡ , AND SCOTT

MITCHELL §

Abstract. We study the optimization of an energy function used by the meshing community to
measure and improve mesh quality. This energy is non-traditional because it is dependent on both
the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh’s
quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In
DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of
the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the
discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial
mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered
several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the
search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new
energy function to address some of these issues.

1. Introduction. Like finite element or finite volume methods, Discrete Exte-
rior Calculus (DEC) is a method for numerically solving partial differential equations
(PDEs). To numerically solve a PDE using DEC, one first divides the function domain
up into non-overlapping triangles, creating a mesh as in Figure 1.1. Using the mesh,
the continuous operators in the PDE are transformed into matrices. These matrices
are used to create a linear system of equations. The numbers in the solution vector
of the linear system give approximations of the function’s values at the vertices of
the mesh. Our work is not about DEC implementation, but rather focuses on under-
standing how one should divide up the domain to create a mesh that is well-suited
for DEC. We refer the reader to [2] and [3] for an introduction to DEC theory.

In 2011, Mullen et al. [5] introduced a mesh quality function called the HOT
(Hodge-Optimized Triangulation) energy. The HOT energy of a mesh gives an upper
bound on the error of the diagonal discrete approximation of the Hodge star operator,
an operator that appears in some PDEs. In addition to this theoretical bound, in
practice there is preliminary evidence that meshes that have low HOT energy yield
better DEC numerical solutions to PDEs involving Hodge star operators. In [5] the
Laplace equation is solved using DEC on a HOT optimized mesh, yielding more
accurate solutions than those produced by using meshes optimized for other well-
known energy functions, such as the Centriodal Voronoi Tessellation (CVT) energy
and the Optimal Delaunay triangulation (ODT) energy.
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2 Meshes Optimized for DEC

Fig. 1.1. A meshed domain

Our contributions:

• We analyze the optimization algorithm presented in [5] for obtaining low HOT
energy meshes. The algorithm begins with a regular triangulation, a type
of triangulation where to each vertex there is an associated weight and the
weights are used to determine the edges (and triangles). Then adjustments to
vertices positions and weights are made. When these adjustments are made,
the triangulation may no longer be regular. In fact, it may not even be a
triangulation. The HOT energy is only defined for regular meshes, thus one
must extrapolate the HOT energy function to labeled abstract triangulations.
In Section 3, we propose a different method for extrapolating HOT than is
done in [5]. Additionally, in Section 4 we discuss how the extrapolated HOT
energy of a non-regular labeled abstract triangulation compares to the HOT
energy of the corresponding regular triangulation.

• We study the landscape of the HOT energy function. We discovered features
of the HOT energy that may make it poorly suited for optimization (Sections
5 and 6).

• We developed software to study the HOT energy. Our software can compute
the HOT energies of a mesh. When the vertex labels (weights) are all equal,
we can also compute finite difference and analytic derivatives of the HOT
energies with respect to the positions of the vertices.

2. Terminology and notation. In this section, we explain terminology and
notation needed for understanding the discussions in subsequent sections.

Triangulations: By a mesh or triangulation, we will mean a decomposition of a 2D-
domain into non-overlapping, non-degenerate triangles, though the ideas presented
here can be extended to 3D-domains. An abstract triangulation is a cell-complex
obtained from a triangulation by adjusting the vertices positions, keeping all the face
relationships of the original triangulation. An abstract triangulation is allowed to have
overlapping triangles. A labeled (abstract) triangulation is an (abstract) triangulation
in which every vertex is labeled by a non-negative number. Let T be a labeled abstract
triangulation. Let {(xi, wi)} denote the labeled vertices of T . We call a triangulation
T ′ that is dual to the power diagram (weighted Voronoi diagram) corresponding to
{(xi, wi)} a regular triangulation with respect to {(x, wi)}. If the edge relationships
of T and T ′ differ, we will call T non-regular.

A Delaunay triangulation corresponding to a set of points {xi} is a regular trian-
gulation corresponding to {(xi, 0)}. Equivalently, a triangulation is Delaunay if the
circumcircle of each triangle contains no vertices of the triangulation in its interior.

Parameters associated to labeled triangles: Let 4 be a triangle embedded in
R2 with vertices x1, x2, x3, labeled by w1, w2, and w3 respectively. We now define
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some measurements associated to 4 that will appear in formulas for computing the
HOT energy of a mesh.

For i = 1, 2, 3, let Ci be the circle of radius
√
wi centered at xi. There exists a

unique circle C such that C intersects all of the Ci orthogonally. The center of C is
the weighted circumcenter of 4 and we denote it by w(4). If all the vertex labels are
equal, the weighted circumcenter is the center of the circumcircle of 4.

For i 6= j, let eij denote the oriented edge in 4 from xi to xj . Define the weighted
circumcenter of eij to be the orthogonal projection of w(4) to eij and denote it by
w(eij). Define dij to be the signed distance from xi to w(eij), where the sign is taken
to be positive if the vector from xi to w(eij) points in the same direction as eij and
otherwise is negative. The dij can be computed by the following formulas:

dij =
|eij |2 + wi − wj

2|eij |
and dji =

|eij |2 + wj − wi
2|eij |

. (2.1)

Additionally, for pairwise distinct i, j, k, we define hikj to be the signed distance
from eij to w(4), where the sign is positive if xk and w(4) lie on the same side of
eij , and otherwise is negative. When 4 is understood, we will often simplify notation
and use hk instead of hikj . The following formula computes hk:

hk =
|eij | cotβk

2
+
wj cotβi + wi cotβj

2|eij |
− wk|eij |

4a(4)
, (2.2)

where a(4) denotes the area of 4. See also [4] for rearranged expressions.

Dual cells: Consider an edge σ of a labeled abstract triangulation M. For each
triangle 4 in which σ is an edge, consider the straight line segment from w(σ) to
w(4). We call the concatenation of all such line segments the edge dual to σ and
denote it by ∗σ. In the case where M is a regular triangulation, ∗σ is an edge in the
associated power diagram. If M is regular, then we can also define duals to vertices
and triangles. See [2] for these definitions.

HOT energy defined: Mullen et al. [5] define the HOT energy function of a regular
mesh M as follows. For i = 0, 1, 2,

?i−HOTp,p(M) =
∑
σ∈Σi

| ∗ σ||σ|Wp(µσ, µ∗σ)p,

where Σi is the collection of all i-dimensional cells in M, | · | is the volume measure,
µσ and µσ∗ are the probability measures associated to the primal cell σ and the dual
cell ∗σ respectively, and Wp is the p-Wasserstein metric.

The energy ?i−HOTp,p(M) gives an upper bound on the error of the discrete
diagonal approximation of the Hodge star operator ?i, which is a particular function
of differential forms. The operator ?i intakes an i-form and outputs an (n− i) form,
where n is the dimension of the mesh (in our case n = 2). More precisely, given an
i-form ω, for each i-cell in M, DEC uses the approximation∫

∗σ

?i(ω) ≈ | ∗ σ|
|σ|

∫
σ

ω.
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A total error is then computed by taking a weighted sum of the error in each of these
integral approximations (cells with larger volume are weighted heavier). The energy
?i−HOTp,p(M) gives an upper bound on the total error.

The following formulas from Appendix A in [5] can be used to compute
?1−HOT2,2(M). Let σ be an edge contained in M, say connecting xi and xj , and
opposite xk in a triangle 4 in M. Define

?1−HOT2,2(σ,4) =
1

3

(
d3
ijhk + dijh

3
k + d3

jihk + djih
3
k

)
. (2.3)

Then define

?1−HOT2,2(σ) =
∑

?1−HOT2,2(σ,4), (2.4)

where the sum is taken over all triangles 4 in M containing σ. Finally, define

?1−HOT2,2(M) =
∑

σ∈Σ1(M)

?1−HOT2,2(σ). (2.5)

We will also use the notation

?1−HOT2,2(4) =
∑

?1−HOT2,2(σ,4),

where the sum is taken over all edges σ in4. Similar explicit formulas for ?i−HOT2,2,
i = 0, 2, can be found in [5].

Optimization algorithm:

To be self-contained, below we restate the mesh optimization algorithm from [5].

//MESH OPTIMIZATION

//Input: vertices x0 = {xi} and weights w0 = {wi},
//and a HOT functional E(x, w).

n← 0

repeat

Compute E(xn, wn)

// Optimize x

Pick step direction dx for E(xn, wn)

Find α satisfying Wolfe’s condition(s)

xn+1 ← xn + αdx // Vertex updates

Update regular triangulation

// Optimize w

Pick step direction dw for E(xn+1, wn)

Find β satisfying Wolfe’s condition(s)

wn+1 ← wn + βdw // Weight updates

Update regular triangulation

n← n+ 1

until(convergence criterion met)
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free vertex (x, y)
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Fig. 3.1. Contour plots of the extrapolated ?1−HOT2,2 energy of σ as (x, y) is moved. The
formula-based extrapolation f1,2(σ) → −∞ as (x, y) moves towards σ, while our theory-based ex-
trapolation t1,2(σ)→∞.

3. Extending HOT energy to non-regular cell complexes. The energy
?i−HOTp,p is a function whose domain is the set of regular triangulations. Because
making adjustments to vertex positions and weights (without updating to a regular
triangulation) may result in a cell complex that is non-regular, it is perhaps unclear
what it means for α to be valid step distance in the optimization algorithm present
in Section 2. In this section, we discuss a method in the literature for extending the
notion of ?i−HOT2,2 energy to non-regular labeled abstract triangulations. We then
propose a different technique to extend the ?i−HOT2,2 function.

Consider the labeled abstract triangulation M′ obtained by moving vertex xi to
a new point x′i, preserving all the original face relationships in M. Let M′′ denote
the regular mesh corresponding to {(xj , wj) : j 6= i} ∪ {(x′i, wi)}. We emphasize that
there is no guarantee that M′ and M′′ will be the same cell complex. Moreover,
it may not make sense to compute ?i−HOTp,p(M′), since M′ may not be regular.
However, we can extrapolate Eqs. (2.3) and (2.4) to obtain a function f1,2 whose
domain is the class of labeled abstract triangulations. By extrapolate, we mean that
for regular triangulations, f1,2 and ?1−HOT2,2 give the same answer. Now we can
compute f1,2(M′). The function f1,2 is the extension of ?1−HOT2,2 used in the mesh
optimization algorithm in [5] (see Section 2).

We found examples of non-regular labeled abstract triangulations for which f1,2

yields negative values (see Figure 3.1). Negative values are problematic from both
the conceptual and practical standpoints. Conceptually, the energy is defined as
a product of positive lengths and Wasserstien distances, and its true minimum is
zero. From a practical standpoint, we worry that an optimization step may progress
towards a position with a negative extrapolated value, and restoring the Delaunay
property would increase the calculated energy. We propose studying an alternative
extrapolation of ?1−HOT2,2, which always yields non-negative output.
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All meshes

Regular
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t

M′

v

v

M′′
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f(M) = t(M) = ?i−HOT2,2(M)

Fig. 3.2. The domain of ?1−HOT2,2 is the set of regular meshes. The functions f1,2 and t1,2
are extensions of ?1−HOT2,2.

Let M be labeled abstract triangulation and σ an edge in M. Let µσ and µ∗σ
denote the probability measures corresponding to σ and ∗σ respectively. Define

t1,2(M) =
∑

σ∈Σ1(M)

|σ|| ∗ σ|W2(µσ, µ∗σ)2. (3.1)

We think of f1,2 as extending the ?1−HOT2,2 formulas and t1,2 as extending the
Optimal Transport theory behind ?1−HOT2,2. See Figure 3.2 for an illustration of
the extrapolation possibilities.

We derived the following formulas that can be used to compute t1,2(M). For an
edge σ which is contained in two triangles,

|σ|| ∗ σ|W2(µσ, µ∗σ)2 ≤ sgn(hk + h`)

3
(d3
ijhk + dijh

3
k + d3

jihk + djih
3
k

+ d3
ijh` + dijh

3
` + d3

jih` + djih
3
`), (3.2)

where xi and xj are the endpoints of σ and xk and x` are the vertices opposite σ. A
similar statement holds if σ is contained in just one triangle.

Idea behind derivation of (3.2): Let x0 be the intersection point in R2 of the lines
containing σ and ∗σ. Then

W2(µσ, µ∗σ)2 ≤
∫
R2

d(x0, x)2d|µσ − µ∗σ|. (3.3)

Inequality (3.3) can be obtained by modifying the proof of Theorem 6.15 in [6], which
uses the fact that for any points x0, x, y ∈ R2

d(x, y)2 ≤ (d(x, x0) + d(x0, y))2 ≤ 2(d(x, x0)2 + d(x0, y)2).

Because of how we chose x0, we have that d(x, y)2 = d(x, x0)2 + d(y, x0)2. Thus, we
are able to drop the factor of 2 that appears in the bound for W2(σ, ∗σ)2 obtained by
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applying Theorem 6.15 verbatim. Now to obtain Ineq. (3.2), compute the integral in
Ineq. (3.3). We suspect the inequality in (3.2) can be replaced with an equality.

When f1,2 and t1,2 differ: f1,2(σ) and t1,2(σ) agree if |∗σ| = hk+h` and disagree if
| ∗σ| = −(hk +h`). Those are the only possibilities since | ∗σ| = |hk +h`|. Figure 3.3
illustrates all the configurations of weighted circumcenters where | ∗ σ| = −(hk + h`).

Because f1,2 and t1,2 are both extensions of ?1−HOT2,2, they agree when the
labeled abstract triangulation is a regular triangulation with respect to its weights.
Observe that if “ with respect to its weights” is removed from the previous statement,
the statement is false as Figure 3 shows.

c1

c2

hk > 0, h` < 0,
and |h`| > hk

c1

c2

hk < 0 and h` < 0

c2

c1

hk < 0, h` > 0,
and |hk| > h`

Fig. 3.3. The dotted line represents the line containing edge σ = eij . We assume xk lies above
the dotted line and x` below the dotted line. Let c1 and c2 denote the weighted circumcenters of
triangles xixjxk and xixjx` respectively. The solid line is ∗σ.

c1

c2 = wc2
weight = 0weight = 0

weight = 1.5

weight = 0

wc1

∗σ

Fig. 3.4. This labeled triangulation has a weighted circumcenter configuration as in Figure 3.3.
It is not the regular triangulation with respect to the weights indicated. However, the triangulation is
the regular triangulation with respect to any set of all equal weights (the triangulation is Delaunay).

.

4. Updating triangulation: How does the energy change?. Let {(xi, wi)}
be a set of weighed points and M the corresponding regular mesh. Let M′ be the
labeled abstract triangulation with labeled points {(x′i, w′i)} and all edge and face
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relationships inherited from M, i.e.

x′ix
′
j ∈ Σ1(M′)⇔ xixj ∈ Σ1(M).

Let M′′ be the regular mesh corresponding to {(x′i, w′i)}. The set-up we have just
described arises in the mesh optimization algorithm in Section 2, where the (x′i, w

′
i)

are chosen so that Wolfe’s conditions are satisfied. In particular,

f1,2(M′) ≤ ?i−HOT2,2(M).

That is, the algorithm always moves towards a lower energy. However, M′ is re-
placed with M′′ before the next loop begins. In [5] there is no discussion of how
?i−HOT2,2(M′′) compares to f1,2(M′) and ?i−HOT2,2(M). Indeed, if
?i−HOT2,2(M′′) is greater than f1,2(M′), or worse ?i−HOT2,2(M), this would raise
serious flags about how successful we can expect the mesh optimization algorithm to
be.

As an initial step towards addressing this concern, we present two examples in
Figures 4.1 and 4.2. In both examples for i = 1, 2 and Example 2 for i = 0, we find
that

?i−HOT2,2(M′′) < fi,2(M′).

For i = 0 in Example 1,

f0,2(M′) < ?0−HOT2,2(M′′) < ?0−HOT2,2(M).

Thus, these examples are in support of the optimization algorithm.

xi = (−1, 0) xj = (1, 0)

x` = (0,−1)

xk = (0, h)

xi = (−1, 0) xj = (1, 0)

x` = (0,−.5)

xk = (−1, h)

Fig. 4.1. Non-Delaunay, Delaunay. Example 1 (left), Example 2 (right). In both examples,
vertices xi, xj and x` remain fixed, and xk is a free vertex whose y-coordinate h is contained in
(0, 1). All vertex weights are 0.

5. Non-convexity of ?i−HOT2,2 energy function. In optimization problems,
working with a convex function is desirable because a local minimum of a convex
function is also a global minimum. In [5], it is asserted that the HOT energy function
is not in general convex, but no evidence is provided for the claim. In this section,
we provide the evidence, confirming the claim.

Given a function f : X → R≥0, we say f has convex contours if for all c ∈ R, the
set

{x ∈ X : f(x) ≤ c}

is convex. If f is convex, then f has convex contours. Thus, if we can show that
the contours of ?i−HOT2,2 are non-convex, we will have shown that ?i−HOT2,2 is
non-convex function.
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Example 1 Example 2

Fig. 4.2. Energies for example meshes in Fig. 4.1. By ?p-energy for the Delaunay mesh, we
mean ?p−HOT2,2(4i`k)+?

p−HOT2,2(4kj`) and for the non-Delaunay mesh, we mean fp,2(4ijk)+
fp,2(4ij`).

Consider the Delaunay mesh M corresponding to the set of points
{(0,−1), (0, 1), (4, 0), (8, 0), (6, 0)} as shown in Figure 5.1. For (x, y) ∈ R2, letM(x, y)
denote the abstract triangulation obtained from M by moving the vertex at (6, 0) to
(x, y), keeping the face relationships ofM. LetMD(x, y) be the Delaunay triangula-
tion corresponding to M(x, y). The bottom right subfigure shows a contour plot for
the function

(x, y) 7→ ?1−HOT2,2MD(x, y),

and the top right subfigure shows a contour plot for the function

(x, y) 7→ f1,2M(x, y).

Observe that the contours of both functions are non-convex, thus ?i−HOT2,2 and
f1,2 in general are not convex. The colors in the contour plot may be hard to see.
So as further proof, Figure 5.1 (bottom left) plots h versus ?1−HOT2,2(MD(h, 0)).
Observe that this curve is non-convex, establishing once again that that, in general,
?1−HOT2,2 is not convex.

Theorem 5.1. ?i−HOT2,2 and f1,2 are, in general, not convex.

5.1. Minimizing max energy triangle. There are other reasons convex con-
tours are desirable, which we now discuss. Let v be a vertex in a mesh M. Let
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Fig. 5.1. This example shows that in general ?1−HOT2,2 and f1,2 are not convex

{v1, v2, . . . , vk} be the vertices adjacent to v, listed in the order they appear in the
boundary of P(v), the patch of triangles in which v is a vertex. For 1 ≤ j ≤ k and
(x, y) ∈ R2, let 4j(x, y) denote the triangle with vertices vj , vj+1 and (x, y). Fix
i = 0, 1, 2. Define

fj(x, y) = ?i−HOT2,2 4j (x, y).

If the contours of fj are convex, then fj is called a quasi-convex function. As
discussed in [1], if all the fj are quasi-convex, then generalized linear program (GLP)
algorithms can be used to solve

min
(x,y)∈R2

max
j

?i−HOT2,2 4j (x, y).

We studied the contours of the fj and demonstrated that they are not convex.
See Figure 5.2.

6. Barriers to mesh inversion. Consider a vertex v in a mesh M. Let P(v)
denote the patch for v, the union of the triangles in M containing v. Note P(v) is
star-shaped, containing a kernel sub-polygon from which all the edges of P(v) are
visible without obstruction. Consider the optimization step where it is v’s turn to
move. Let M(x, y) denote the labeled abstract triangulation obtained by moving v
to (x, y). If the new position for v lies outside the kernel of P(v), then we say M
has been inverted. An inverted triangulation is not truly a triangulation. Indeed, to
obtain a triangulation we must change edge relationships between some of the vertices;
otherwise we will have overlapping triangles.
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free vertex v = (x, y)
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Fig. 5.2. Contour plots of the function fj

In some applications, it is desirable to maintain the connectivity of the original
mesh. In those situations, it is desirable that the energy function being optimized goes
to infinity as v approaches the boundary of the kernel of P(v). This way, when we
optimize the mesh energy, the mesh is protected against inversion. We will say that an
energy function E has a barrier if for every regular meshM, we have E(M(x, y))→∞
as we move (x, y) to the boundary of the kernel of P(v).

We have shown the extrapolation of the ?i−HOT2,2 energy discussed in Section 3
do not have barriers. However, in some sense they come very close to having a barrier.
We will make this precise in Theorem 6.2, but first consider the following examples.

LetM(x, y) be the abstract triangulation from Figure 5.1. Consider the kernel K
of (6, 0) inM(6, 0); that is, the polygon with vertices (4, 0), (8, 0), ( 16

3 ,−
1
3 ) and ( 16

3 ,
1
3 ).

Observe that as (x, y) moves from inside K towards any point on the boundary of
K except (4, 0) and (8, 0), the energy f1,2(M(x, y)) → ∞. However, as (x, y) moves
towards (4, 0) or (8, 0), the energy f1,2(M(x, y)) approaches a finite value (in fact a
local minimum), demonstrating that f1,2 does not have a barrier. Notice that both
these local minima are bad because they result in degenerate triangles. Moreover,
numerical optimization may be unstable here due to the close proximity of these
minima to barriers.

Figure 5.2 gives another example showing that f1,2 does not have a barrier. There
the energy goes to infinity as (x, y) approaches any point on the x-axis except (−1, 0)
or (1, 0). In these two cases, the energy approaches a finite value.

At first glance, it may seem like discussing the existence of barriers for the ex-
trapolations fi,2 and t1,2 instead of barriers for ?i−HOT2,2 is the wrong discussion
to be having since, after all, we seek HOT optimized meshes. However, given that
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each loop of the mesh optimization algorithm is moving vertices using the ?i−HOT2,2

extension fi,2, studying barriers of the extended functions are, in fact, exactly the
thing to be discussing.

Theorem 6.1. The extrapolated functions fi,2 and t1,2 do not have barriers,
i = 0, 1, 2.

For t1,2 we now make a more technical, but more informative, statement that
shows exactly why t1,2 does not have a barrier, telling us what approach directions
yield finite energy.

Theorem 6.2. let M be a regular mesh and xk an interior vertex of M. Let
M(x, y) denote the labeled abstract triangulation resulting from moving xk to (x, y),
keeping all other vertices and all weights fixed, maintaining the face relationships of
M. Fix a coordinate system in R2 so that some edge opposite xk is contained in
the x-axis. For each such edge eij, say connecting the points (si, 0) and (sj , 0) where
si < sj, define

pij(x) = (sj − si)(x− si)(x− sj)− wi(x− sj) + wj(x− si)− wk(sj − si).

Fix c ∈ R. If pij(c) 6= 0 for some edge eij, then t(M(c, y))→∞ as y → 0. Otherwise,
t(M(c, y)) limits to a finite value.

7. A modified energy function HOT. We propose adjusting the HOT energy
function to produce a new energy function HOT to address some of the issues we have
identified with the HOT energy.

New energy defined: Let M be a regular triangulation and σ an edge in M
connecting vertices xi and xj . Let 4 be a triangle in M in which σ is an edge and
let xk denote the vertex opposite σ in 4. First define the energy of σ relative to 4
as follows:

?1−HOT2,2(σ,4) =

(
1

a(4)2

)
1

3

(
d3
ijhk + dijh

3
k + d3

jihk + djih
3
k

)
.

Now define the HOT energy of σ to be

?1−HOT2,2(σ) =
∑

?1−HOT2,2(σ,4),

where the sum is taken over all triangles 4 inM in which σ is an edge. Finally define

?1−HOT2,2(M) =
∑

σ∈Σ1(M)

?i−HOT2,2(σ).

Similarly, we modify the definitions of ?0−HOT2,2 and ?2−HOT2,2 by dividing
them by the squared areas of triangles to produce new energy functions ?0−HOT2,2

and ?2−HOT2,2.

Features of new energy: HOT has desirable properties that HOT does not have.
1. For i = 1, 2, the formula-based extension of ?i−HOT2,2 to the class of labeled

abstract triangulations in which all vertices have equal weights has a barrier.
In this class, the energy ?0−HOT2,2 goes to −∞ as a vertex is moved to the
boundary of its patch, which is bad since we seek energy minima. We suspect
modifying the theory based extrapolation HOT instead of the formula based
extrapolation will yield barriers for all stars.
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We conjecture that the formula-based extension of ?i−HOT2,2 has a barrier
for i = 1, 2 even if the vertex weights are unequal, but have not completed
the verification of this claim.

2. HOT is scale invariant. This means that triangles of the same shape but
different size contribute equally to HOT. In the HOT energy, the larger
triangle makes a larger contribution.

3. HOT is dimensionless. Observe that the units of the HOT energy are length
to the fourth power. By dividing terms by squares of triangle areas to obtain
HOT, we create an unitless energy function.

8. Conclusion. Our work presented in this paper raises many questions about
the landscape of the HOT energy function and about how best to optimize it. In
future work, we plan to address the following.

1. Is using the theory-based or the formula-based extrapolation of the HOT
energy function better for obtaining a HOT optimized mesh?

2. Does updating the (labeled abstract) triangulation to a regular triangulation
after all the vertices and weights have been moved always reduce the system
energy? Or is it possible that updating increases the system energy?

3. Just because ?i−HOT2,2 is non-convex, it does not necessarily mean there are
multiple local minima. If there are multiple minima, it does not necessarily
mean that converging to one of them in dramatically worse than converging
to another. We will study the existence of multiple local minima, and the
energy differences between them.

4. Do HOT optimized meshes yield good solutions to PDEs?
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